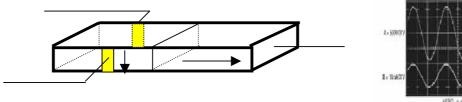
Piezo Ceramics DC-AC Inverter Specification

Note: Actual product image may be different.

Model	FC04-12-06
Part No.	400-8888-205
Description	4 lamps with wide range dimming control Independent open lamp protection
Customer	
Hardware Rev	1.0
Document Rev	1.0

Approved by	Verified by	Prepared by
Eddi e	Bart	Joey

Revision Record


Request Document No.	Date	Page	Item	Description	Revision

1. General:

Piezoelectric ceramics are used to convert electric energy to mechanical energy and vice versa. Piezoelectric transformer can generate a high voltage output by a low voltage input through the utilization of mechanical resonance and magnification phenomenon of the piezoelectric transducer.

1.1 Principle:

The piezoelectric transformer has primary and secondary electrodes on the piezoelectric ceramics. The primary side is polarized in the thickness direction and secondary side is polarized in the length direction. When a voltage with the resonance frequency is applied on the primary side, a strong mechanical vibration is generated by "inverse piezoelectric effect" of the ceramics, and a high voltage is output from the secondary side, matching its vibration frequency by "direct piezoelectric effect".

1.2 Advantages & special features:

- No EMI (Piezo ceramics)
- > > 85% High efficiency
- Inflammability (no liability)
- Wide range no flicker dimming
- One size fits all
- Constant current mode
- Wide operating temperature –40 to +85
- Independent open lamp protection
- Independent short circuit protection
- Balanced sine wave output, no harmonic current noise

- Balanced sine wave output, ultra low harmonic current noise
- Short start up time, extended CCFL lifespan
- Open lamp and short circuit protection
- Built-in Arc Protection
- ➤ 100% full load test
- Compact Size, high reliability
- Low heat generation
- ➤ UL approval E304655
- RoHS compliant with Piezo ceramic exemption
- *Spec subject to models

2. Detailed specification:

2.1 Electrical characteristics (Ta=25+/-5)

	ITEM			TEST	Min.	Тур.	Max.	Unit	Notes
1	Input voltage		Vin	-	11	12	13	V	
	2 Input current	Min	li.e	D _{PWM} =0% & V _{IPWM} =5V	-	0.1	-		
2		Max	lin	D _{PWM} =100% & V _{IPWM} =0V	-	2	-	A	
3	Input Inrush Current		-	D _{PWM} =100% & V _{IPWM} =0V	-	-	5	Apeak	Initial power on only.
4	Output Inrush Currer	nt	-	D _{PWM} =50%	-	-	10	mApeak	
5	Total Output Current	t	lout	D_{PWM} =100% & V_{IPWM} =0V	22	24	26	mA	
6	Individual Output	Min	Ι _L	D _{PWM} =0% & V _{IPWM} =5V	0.1	1	1.5	mA	Low volt side of LOAD
	Current	Max	'L	D _{PWM} =100% & V _{IPWM} =0V	5.5	6.0	6.5	IIIA	
7	Oscillating Frequency		Fw	-	50	53	60	KHz	
8	Minimum Duty Ratio	1	Dmin	$D_{PWM}=D_{min}$	-	-	-	%	
9	On/Off Control Voltage	On	.,	-	1.5		5	V	
9	On/Off Control Voltage	Off	V_{BLON}	-	0	-	1.6	V	
10	On/Off Control Curre	nt	I _{BLON}	-	5	-	10	mA	
11	1 Internal DC Control Voltage	Min	V_{IPWM}	-	-	5	-	V	Duty Ratio = 1%
		Max	V IPWM	-	-	0	-	V	Duty Ratio=100%
12	Internal DC Control Current		I_{IPWM}	-	-	5	-	mA	
	13 Open Lamp Voltage			Ta=-20°C	TBD	ı	3500		Under B/L condition
13			Vs	Ta=0°C	2820	-	3500	Vrms	
				Ta=25°C	2090	-	3500		
14	4 Lamp Voltage		Vw	-	600	700	750	Vrms	*120KΩ load
15	DC Bias Level		I _{DC}	-	-	1	10	%	I _{peak} - I _{-peak} /I _L

Note: Lamp voltages are measured with a simulated resistive load. Piezo inverter will automatically adjust output voltage to compensate for load changes caused by lamp manufacturing tolerance, ambient temperature, lamp aging and etc.

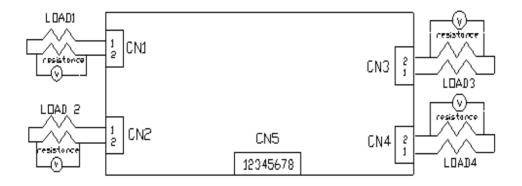
2.2 Environmental Characteristic:

Storage Temperature : -30 \sim +70 Operating Temperature: -40 \sim +85 Storage Humidity : 90% Max Operating Humidity : 90% Max

(RH Non-condensation)

2.3 Protection Mechanism:

Condition	Test Method	Protection	NOTE
Over Voltage	Open Lamp	Shutdown	
Over Current	Input Shutter	Shutdown	0.1S <t<sub>fault<2S</t<sub>
Output Short	Output Shutter: 2K	Shutdown	0.10 Trault 20
Arcing	Transformer Open	Shutdown	


3. Application Notes:

- 3.1 Always connect output loading before turning on the unit to avoid damages.
- 3.2 Avoid over stressing the high voltage output connector by using short wire.
- 3.3 Avoid bending, twisting or applying any pressure to the PCB and Piezo transformer.

4. Typical Application:

LCD-TV, LCD-Monitor CCFL backlight

4.1 Input connector pin assignment:

Input: CN5 [JST S8B-PH-KL]

	—		
Pin	Signal name Function		
1,2,3	GND	GND	
4	VADJ	0 to +5V voltage level or 100-1000HZ 0 to +5V PWM	
5	ON/OFF	+5V/0V	
6,7,8	VIN	+12V	

Voltage level dimming: 0V: Brightest, +5V: Dark

4.2 Output connector pin assignment:

Output: CN1-CN4 [JST SM02B-BHSS-1-TB]

Pin	Signal name	Function
1	CFL HOT	CFL High voltage
2	CFL COLD	CFL Low Voltage

5. Reliability

5.1 Production tests

	Test item	Test condition	Criteria		
1	Low temp. Operation	Ta=0 500 hours	Measurement must be performed 1 hour after		
2	High temp. Operation	Ta=50 500 hours	taken out from the		
3	High temp & Humidity	Ta=50 ,80%RH,1000 hours	chamber. Must meet initial performance except CCFL deterioration.		
4	Low temp. Storage	Ta=-30 , 240hr Non operation	Measurement must be		
5	High temp. Storage	Ta=70 , 240hr Non operation	performed 4 hour after taking out from the chamber. Must meet initial performance excep CCFL deterioration.		
6	Thermal shock	Ta=-20 ,30Min<->+60 , 30Min. 200 cycles, non operation, Transition duration less than 3 min.			
7	On-Off Cycle	Ta=25 <u>+</u> 3 500 hr, 10[s]ON, 10[s]OFF 100,000 Cycles	Must meet Initial performance except CCFL deterioration.		
8	Shock	50G 11 msec Half-sinusoidal waveform X,Y,Z 6 directions	No noticeable changes allowed		
9	Vibration	10-55Hz, 10 minutes, 1.0G X,Y,Z 3 directions,1 time	No noticeable changes allowed		

5.2 Typical duty cycle (power on hours):

- > 240 power ON hours per month.
- > 720 power ON/OFF cycle per month.
- Maximum brightness setting at a typical input voltage.

Note:

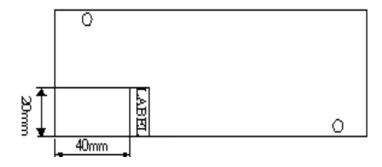
Based on 30 working environment (typical LCD TV or LCD monitor interior temperature)

6. Safety requirements

6.1 Applicable safety standards

- > UL 1950 version 3.0
- > CSA-C22.2 NO.950
- > IEC60950 version 3.0
- ➤ EN 60 950

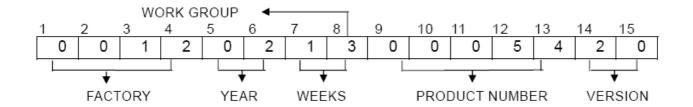
6.2 Abnormal tests

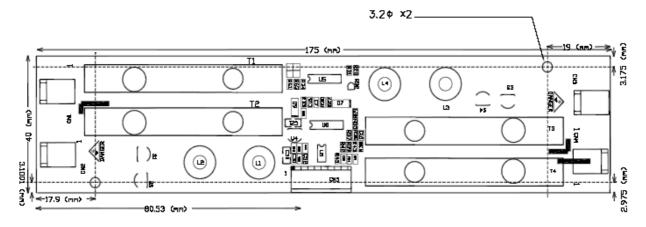

There must be no smell, smoke and fire cause by any failure on the inverter circuit. All components open/short test must be performed and reported. Especially, should not rely on a fuse or an over load protection function of the power supply.

6.3 Limited current circuit

The inverter conforms to IEC60950 limited current circuit spec and is UL approved with file number: E304655.

7. Additional notes:

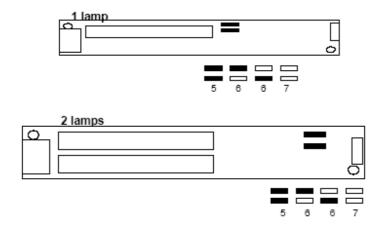

7.1 Label position (Reverse side of PCB)

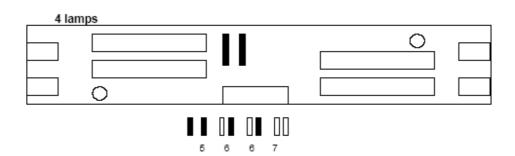

Label: Includes model, part number and data code.

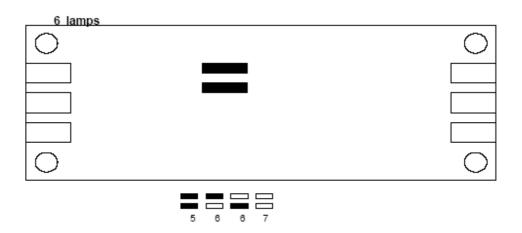
Model Part No Data code

7.2 Data code (example):

8. PCB layout:


NOTES:


1. Base board thickness: 1.6mm


Thru hole: 3.2mm
 Material: FR-4
 Units: mm

Appendix

Zippy Piezo Inverter lamp current jumper

